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On the capillary motion of arbitrary clusters of
spherical bubbles. Part 1. General theory
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A new and systematic approach is proposed to determine the migration of torque-free
spherical bubbles immersed in a steady and non-uniform unbounded Stokes flow and
subject to arbitrary capillary effects. The advocated procedure appeals to only a very
few quantities on the surface of each bubble and is therefore suitable for a future
numerical treatment of arbitrary clusters of bubbles. For a single bubble, the theory
allows a straightforward analytical implementation and the predicted results agree
well with Hetsroni & Haber (1970), Hetsroni et al. (1971) and Subramanian (1985).
The thermocapillary motion of non-conducting spherical bubbles freely suspended in
a quiescent liquid in the presence of an arbitrary ambient temperature T∞ is considered
and it is shown that it is futile to determine the disturbed temperature field, whatever
T∞, once bubbles are equivalent (i.e. experience the same velocity in a given uniform
temperature gradient ∇T∞, as obtained by Acrivos et al. 1990 and Wang et al. 1994).

1. Introduction
As shown both experimentally and theoretically by Young, Goldstein & Block

(1959) for vanishing Reynolds and Marangoni numbers, a small spherical bubble
freely suspended in an unbounded and quiescent Newtonian liquid of viscosity µ

migrates when its surface tension γ is non-uniform. For instance, if γ depends on
temperature T with dγ /dT uniform the so-called thermocapillary velocity U of a
single and non-conducting bubble of radius a subject to the uniform temperature
gradient ∇T∞ is

U = − a

2µ

dγ

dT
∇T∞. (1.1)

In practical applications clusters of bubbles occur and, if equivalent bubbles (having
the same velocity (1.1) when isolated) do not interact (Acrivos, Jeffrey & Saville 1990;
Wang, Maury & Acrivos 1994), particle–particle interactions in general strongly affect
the zeroth-order solution (1.1) for arbitrary bubbles. These interactions have been
thoroughly addressed for two-bubble clusters by using spherical bipolar coordinates
(Meyyappan, Wilcox & Subramanian 1983; Feuillebois 1989; Keh & Chen 1990),
or the method of reflections (Anderson 1985; Meyyappan & Subramanian 1984;
Sun & Hu 2002) and twin multipole expansions (Satrape 1992; Wang et al. 1994).
Unfortunately, for more than two non-equivalent bubbles available results are restricted
to three-bubble chains (Keh & Chen 1992, 1993; Wei & Subramanian 1993) and the
general treatment advocated in Keh & Chen (1993) becomes so unwieldy for fully
three-dimensional configurations (even for three bubbles) that it was practically
impossible to deal with more realistic geometries. This paper introduces a new
approach valid for arbitrary capillary effects and clusters of bubbles which will
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Figure 1. A fully three-dimensional N -bubble cluster subject to arbitrary ambient steady
Stokes flow (u∞, p∞), capillary effects (γ1, . . . , γN ) and net forces F(n) (case of N = 3).

not result in an increasing complexity in implementation as the number of bubbles
increases.

2. A general theory for arbitrary capillary effects
Throughout this section torque-free but not necessarily force-free bubbles experi-

encing arbitrary capillary effects are treated.

2.1. Assumptions and governing equations

We consider, as sketched in figure 1, N � 1 torque-free spherical bubble(s) Pn

immersed in an unbounded Newtonian liquid of uniform density ρ and viscosity
µ and subject to a non-uniform steady Stokes (u∞, p∞) and arbitrary capillary effects.
The resulting non-uniform surface tension γn on the boundary Sn of Pn is assumed
to be high enough to keep Pn spherical with centre On, radius an and unit outward
normal n. Since it is also defined inside each bubble the ambient Stokes flow (u∞, p∞)
with stress tensor σ ∞ applies zero net force and torque on Pn. Thus, denoting by M

a point on Sn, one obtains∫
Sn

σ ∞ · n dSn = 0,

∫
Sn

OnM ∧ σ ∞ · n dSn = 0. (2.1)

In the fluid domain Ω, the liquid has pressure p∞ +p and velocity u∞ + u of scale U,

the Reynolds number Re = ρUa/µ with a = max(an) is sufficiently small to neglect all
inertial effects and the migration of bubbles is assumed quasi-static. Accordingly, the
perturbation flow (u, p) obeys the steady Stokes equations and the far-field behaviour

µ∇2u = ∇p and ∇ · u = 0 in Ω, (u, p) → (0, 0) at ∞. (2.2)

For spherical bubbles we ignore the normal stress balance on each surface Sn (Satrape
1992). If σ denotes the stress tensor induced by (u, p) the boundary conditions then
are

u · n =
[
U (n) − u∞

]
· n and σ · n − [n · σ · n]n

= −∇sγn − σ ∞ · n + [n · σ ∞ · n]n on Sn (2.3)
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where ∇s designates the gradient along the surface Sn of the torque-free bubble Pn

which translates only at the unknown velocity U (n) (the surface Sn does not rotate
but the inviscid gas inside may experience its own motion). Owing to the property
OnM ∧ n = 0, the second condition (2.3) and Appendix A it is clear that∫

Sn

OnM ∧ [(σ ∞ + σ ) · n] dSn =

∫
Sn

∇sγn ∧ OnM dSn = 0 (2.4)

and the disturbed flow (u∞ + u, p∞ + p) indeed applies a zero net torque on each
bubble Pn (with respect to its centre On). Recalling (2.1), we thus supplement (2.2)–
(2.3) for bubbles of prescribed net force F(n) (such as buoyancy) with the following
conditions:

F(n) = −
∫

Sn

σ · n dSn. (2.5)

For arbitrary N -bubble clusters, ambient Stokes flow (u∞, p∞), net forces F(n) and
capillary effects (γ1, . . . , γN ) the generalized velocity X = (U (1), . . . , U (N)) is obtained
by solving (2.2)–(2.3) in conjunction with (2.5), a very challenging task. A conceivable
numerical strategy may consist of first devising an algorithm that approximates in
the whole unbounded fluid domain the solution to (2.2)–(2.3) and the resulting net
forces on the bubbles for any given entry X . Starting with a suitable guess value
Xg this Code is then used in an iterative fashion to enforce the conditions (2.5).
Unfortunately, even when resorting for instance to a finite element technique this
approach will become prohibitively involved and CPU time consuming for fully
three-dimensional configurations because the liquid domain Ω is three-dimensional
and unbounded. As shown in § 2.2, it is however possible to judiciously select 3N

Stokes flows that permit us to obtain X by evaluating only surface quantities on the
entire two-dimensional boundary S = ∪N

n=1Sn.

2.2. Advocated approach

Henceforth, we adopt Cartesian coordinates (O, x1, x2, x3) with x = OM, xi = x · ei

and r = |x|. For i ∈ {1, 2, 3} and n ∈ {1, . . . , N} let us introduce the Stokes flow

(u(n)
i , p

(n)
i ) with stress tensor σ

(n)
i such that

µ∇2u(n)
i = ∇p

(n)
i and ∇ · u(n)

i = 0 in Ω,
(
u(n)

i , p
(n)
i

)
→ (0, 0) as r → ∞, (2.6)

u(n)
i · n = δnmei · n and σ

(n)
i · n −

[
n · σ (n)

i · n
]
n = 0 on Sm for m = 1, . . . , N,

(2.7)

with δ the Kronecker symbol. For this flow the bubble Pn has velocity ei , other
bubbles are motionless and there is neither ambient flow nor capillary effects. The
surface traction σ

(n)
i · n is normal on each boundary Sm and in general applies a non-

zero net force on Pm. Moreover, (u(n)
i , p

(n)
i ) permits us to express for (u, p) satisfying

(2.2)–(2.3) the integral

I
(n)
i =

∫
Sn

(ei · n)(n · σ · n) dSn (2.8)

in terms of X = (U (1), . . . , U (N)) and (u∞, σ ∞, γ1, . . . , γN ). As seen below, I
(n)
i arises

when enforcing (2.5). Invoking the far-field expansion of the Stokes equations (Lamb
1932) we first observe that |u| and |u(n)

i | decay at least as fast as 1/r whereas

p, p
(n)
i , |σ · x/r | and |σ (n)

i · x/r | decay at least as fast as 1/r2 far from the cluster.
Thus, the usual reciprocal identity (Happel & Brenner 1973) for the Stokes flows
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(u, p), and (u(n)
i , p

(n)
i ) is∫

S

u · σ (n)
i · n dS =

∫
S

u(n)
i · σ · n dS, S = ∪N

m=1Sm. (2.9)

Since σ
(n)
i · n is normal on each surface Sm it immediately follows that∫

S

u · σ (n)
i · n dS =

∫
S

(u · n)
(
n · σ (n)

i · n
)
dS. (2.10)

Exploiting on Sm the boundary condition u(n)
i · n = δnmei · n, one also easily obtains∫

S

u(n)
i · σ · n dS =

∫
S

{(
u(n)

i · n
)
(n · σ · n) + u(n)

i · [σ · n − (n · σ · n)n]
}

dS

=

∫
Sn

(ei · n)(n · σ · n) dSn +

∫
S

u(n)
i · [σ · n − (n · σ · n)n] dS. (2.11)

By virtue of (2.10)–(2.11), our equality (2.9) thus yields

I
(n)
i =

N∑
m=1

∫
Sm

{
(u · n)

(
n · σ (n)

i · n
)

− u(n)
i · [σ · n − (n · σ · n)n]

}
dSm. (2.12)

Furthermore, note that under the conditions (2.5) we also impose

−F(n) · ei =

∫
Sn

ei · σ · n dSn = I
(n)
i +

∫
Sn

ei · [σ · n − (n · σ · n)n] dSn. (2.13)

Substituting (2.12) into (2.13) and taking into account the boundary conditions (2.3)
for the perturbation flow (u, p), one finally arrives at the following key linear system
for the 3N unknown Cartesian velocity components U

(m)
j = U (m) · ej :

N∑
m=1

3∑
j=1

A
(n),(m)
ij U

(m)
j = C

(n)
i + D

(n)
i = B

(n)
i , i ∈ {1, 2, 3} and n= ∈ {1, . . . , N}

(2.14)
with the definitions

A
(n),(m)
ij =

∫
Sm

(ej · n)
(
n · σ (n)

i · n
)
dSm, C

(n)
i =

N∑
m=1

∫
Sm

(u∞ · n)
(
n · σ (n)

i · n
)
dSm, (2.15)

D
(n)
i = −F(n) · ei −

N∑
m=1

∫
Sm

(
u(n)

i − δnmei

)
· [∇sγm + σ ∞ · n − (n · σ ∞ · n)n] dSm. (2.16)

Adopting the standard summation convention and introducing the matrices B(m) and
A(n),(m) associated with the vectors B (m)

i ei and the second-rank tensors A(n),(m)
ij ei ⊗ ej

respectively, (2.14) readily admits the condensed notation


A(1),(1) . . . A(1),(m) . . . A(1),(N)

. . . . . . . . . . . . . . .

A(n),(1) . . . A(n),(m) . . . A(n),(N)

. . . . . . . . . . . . . . .

A(N),(1) . . . A(N),(m) . . . A(N),(N)







U (1)

. . .

U (m)

. . .

U (N)


 =




B(1)

. . .

B(n)

. . .

B(N)


 . (2.17)
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Let us now replace the perturbation flow (u, p) by (u(m)
j , p

(m)
j ) with stress tensor σ

(m)
j

in our relations (2.9) and (2.11). Since σ
(m)
j · n is normal to S, it follows that∫

S

u(m)
j · σ (n)

i · n dS =

∫
S

u(n)
i · σ (m)

j · n dS =

∫
Sn

(ei · n)
(
n · σ (m)

j · n
)
dSn = A

(m),(n)
ji . (2.18)

Switching the index pairs (n, i) and (m, j ) in (2.18) then yields A(n),(m)
ij = A

(m),(n)
ji . The

3N × 3N matrix A arising in (2.17) is thus symmetric. Moreover, the rate E of
dissipation of mechanical energy in any steady Stokes flow (u′, p′), with stress tensor
σ ′, zero body force and quiessence far from the cluster, obeys (Happel & Brenner
1973)

−E =

∫
S

u′ · σ ′ · n dS =

N∑
l=1

∫
Sl

u′ · σ ′ · n dSl < 0. (2.19)

Accordingly, for any given velocity X = (U (1), . . . , U (N)), if we select (u′, p′) and σ ′

as

u′ =

N∑
m=1

3∑
j=1

U
(m)
j u(m)

j , p′ =

N∑
m=1

3∑
j=1

U
(m)
j p

(m)
j , σ ′ =

N∑
n=1

3∑
i=1

U
(n)
i σ

(n)
i (2.20)

and recall that σ
(n)
i · n∧n = 0 we obtain (with a summation over indices n, m, i and j )

∫
S

u′ · σ ′ · n dS =

N∑
l=1

[∫
Sl

(
u(m)

j · n
)(

n · σ (n)
i · n

)
dSl

]
U

(m)
j U

(n)
i = A

(n),(m)
ij U

(m)
j U

(n)
i < 0.

(2.21)

The real-valued matrix A is thus both symmetric and negative-definite. The linear
equations (2.14) therefore admit a unique solution X for arbitrarily prescribed
capillary effects (γ1, . . . , γN ), net forces F(n) and non-uniform ambient Stokes flow
(u∞, p∞). This establishes the well posedness of the advocated approach. The main
result of the present paper is that, as previously mentioned and evidenced by our
definitions (2.15)–(2.16), one can determine the velocities U (n) by evaluating a very
few quantities defined on the surfaces Sm: the tangential velocities u(n)

i − δnmei and the

normal stresses σ
(n)
i · n induced by the Stokes flows (u(n)

i , p
(n)
i ). As will be established

in a future numerical implementation (Sellier 2004), these vectors obey coupled
boundary-integral equations on S, and one thus only needs to mesh the surface of
each bubble rather than the unbounded fluid domain.

2.3. Case of a single bubble

Whilst it requires a numerical treatment for N � 2, the advocated strategy reduces
to a straightforward analytical application for a single spherical bubble P1, with
centre O1 = O, radius a1 = a, surface S1 and surface tension γ1 = γ. By virtue of
(2.14)–(2.16), the net hydrodynamic force F = −F(1) and the velocity U experienced
by P1 obey

F · ei =

∫
S1

{(
u(1)

i − ei

)
· [∇sγ + σ ∞ · n − (n · σ ∞ · n)n] +

(
n · σ (1)

i · n
)
(U − u∞) · n

}
dS1

(2.22)
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with (u(1)
i , p

(1)
i ) of stress tensor σ

(1)
i subject to (2.6)–(2.7). As detailed in Appendix B

one obtains on the surface S1

u(1)
i − ei = [(ei · n)n − ei]/2, σ

(1)
i · n = −3µ(ei · n)n/a (2.23)

which will be of interest as a future numerical benchmark. After some algebra, also
displayed in Appendix B, (2.22) thereafter gives

F = −4πµa[U − u∞(O)] − 1

2

∫
S1

∇sγ dS1 (2.24)

with u∞(O) denoting the velocity of the ambient flow u∞ at the bubble centre O.

Note that (2.24) agrees well (as special cases) with results established for a single drop
in the absence of capillary effects or ambient flow by Hetsroni & Haber (1970) or
Subramanian (1985). However, Hetsroni & Haber (1970) resort to a more involved
treatment and Subramanian (1985) appeals to other auxiliary Stokes flows (u(1)

i , p
(1)
i ).

3. Application to the thermocapillary migration of freely suspended and
spherical bubbles

This section applies the proposed procedure to the thermocapillary motion of
spherical bubbles freely immersed in a quiescent liquid.

3.1. General case

Each bubble Pn is freely suspended (F(n) = 0), of surface tension γn depending solely
on the temperature T with dγn/dT = γ ′

n constant and, for common substances,
negative. The N -bubble cluster is embedded in a quiescent liquid (u∞ = 0, p∞ = 0)
and a divergence-free but not necessarily uniform temperature gradient ∇T∞. The
bubbles modify T∞ and we denote the disturbed temperature by T∞ +T ′. Under these
assumptions and the standard summation convention, (2.14)–(2.16) readily become

N∑
m=1

3∑
j=1

A
(n),(m)
ij U

(m)
j =

N∑
m=1

∫
Sm

γ ′
m

(
δnmei − u(n)

i

)
· ∇s[T∞ + T ′] dSm. (3.1)

Neglecting the thermal diffusivity of the gas inside the bubbles with respect to the
constant liquid thermal diffusivity α > 0 and assuming that the Marangoni number
Ma = Ua/α is negligible, T ′ obeys the well-posed exterior Neumann problem

∇2T ′ = 0 in Ω, ∇T ′ → 0 as r → ∞ and ∇T ′ · n

= −∇T∞ · n on S = ∪N
m=1Sm. (3.2)

As will be shown in Part 2 (Sellier 2004), (3.2) makes it possible to compute on each
surface Sm the required vector ∇sT

′ by solving a boundary-integral equation on the
entire boundary S. Recalling our similar remarks for the surface quantities u(n)

i −δnmei

and σ
(n)
i · n, the numerical determination of the velocities U (n) by means of (2.6)–(2.7)

and (3.1)–(3.2) will require only the meshing of S.

3.2. Case of equivalent bubbles

The bubbles are equivalent whenever a1γ
′
1 = · · · = aNγ ′

N = K > 0. In practice, such
circumstances might occur only for clusters consisting of identical bubbles (a1 =
· · · = aN and γ ′

1 = · · · = γ ′
N ). As nicely proved in Wang et al. (1994), equivalent
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bubbles immersed in a uniform temperature gradient ∇T∞ adopt the same velocities

U (1) = · · · = U (N) = − K

2µ
∇T∞. (3.3)

Unfortunately, it is not straightforward to analytically deduce (3.3) from (3.1)–(3.2)
when bubbles are equivalent and ∇T∞ is uniform. Another formulation is needed and
the crucial step consists of noting that (u′, p′) = (∇T ′, 0), with stress tensor σ ′, is a
steady Stokes flow quiescent at infinity. Thus, one can replace (u, p) with (u′, p′) in
(2.9)–(2.11). Setting σ ′

t = σ ′ · n − (n · σ ′ · n)n on S, it follows that∫
S

(u′ · n)
(
n · σ (n)

i · n
)
dS =

∫
Sn

(ei · n)(n · σ ′ · n) dSn +

∫
S

u(n)
i · σ ′

t dS. (3.4)

Furthermore, as established in Appendix C,∫
Sn

ei · σ ′ · n dSn = 0,
σ ′

t

2µ
= ∇s[∇T ′ · n] − ∇sT

′

an

on Sn. (3.5)

Accordingly, exploiting the boundary condition (3.2) the expression (3.4) becomes

N∑
m=1

∫
Sm

{(
∇T∞ · n

2µ

)(
n · σ (n)

i · n
)

−
(
u(n)

i − δnmei

)
·
{

∇s[∇T∞ · n] +
∇sT

′

am

}}
dSm = 0.

(3.6)
For equivalent bubbles with anγn =K > 0 the combination of (3.1) and (3.6) thus
yields

N∑
m=1

[∫
Sm

(
n · σ (n)

i · n
)
n dSm

]
· U (m) = − K

2µ

N∑
m=1

∫
Sm

(
n · σ (n)

i · n
)
(n · ∇T∞) dSm

+ K

N∑
m=1

∫
Sm

(
u(n)

i − δnmei

)
·
{

∇s[∇T∞ · n] − ∇sT∞

am

}
dSm. (3.7)

Clearly, for equivalent bubbles one may solve (3.7) instead of (3.1)–(3.2) and therefore
does not need to determine the disturbance temperature T ′. This property holds for
any divergence-free temperature gradient ∇T∞. When exploiting (3.7) two cases arise.

(i) N = 1. In this case we consider a single bubble P1 with radius a, centre
O1 = O, boundary S1 and surface tension γ with K = γ ′a. Noting that n · σ (1)

i · n =
−3µ(ei · n)/a (recall (2.23)) and replacing the Stokes flow (u∞, p∞) in (B 5) and (B 7)
by the trivial Stokes flows (ej , 0) and (∇T∞, 0), one easily obtains∫

S1

(
n · σ (1)

i · n
)
(n · ej )

4πµa
dS1 = −δij ,

∫
S1

(
n · σ (1)

i · n
)
(n · ∇T∞)

4πµa
dS1 = −∇T∞(O) · ei

(3.8)

where ∇T∞(0) denotes the ambient temperature gradient at the bubble centre O1 = O.

Morevover, as shown in Appendix C,

L = 2

∫
S1

(
u(1)

i − ei

)
·
{

∇s(∇T∞ · n) − ∇sT∞

a

}
dS1 = 0. (3.9)

Substituting (3.8) and (3.9) into (3.7) the velocity U of the single bubble becomes
U = −γ ′a∇T∞(0)/(2µ), a result that agrees with Subramanian (1985). If ∇T∞ is
uniform one of course obtains the solution (1.1).
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(ii) N � 2. In this case we consider at least two equivalent bubbles. If ∇T∞ is
uniform, we note that ∇s(∇T∞) − ∇sT∞/am vanishes on Sm (using (A 3)) and, recalling
the definition (2.15) of A(n),(m)

ij , (3.7) readily becomes

N∑
m=1

3∑
j=1

A
(n),(m)
ij

[
U

(m)
j +

K

2µ
∇T∞ · ej

]
= 0. (3.10)

Hence, one immediately recovers (3.3). Whenever ∇T∞ is non-uniform only a numerical
treatment of (3.7) is possible for N � 2. Such a task is the subject of Part 2.

4. Conclusions
A new approach has been proposed to determine the motion of torque-free spherical

bubbles immersed in a non-uniform ambient Stokes flow and subject to arbitrary
capillary effects and net forces. As established, the procedure is well-posed. In addition
and unlike previous studies, it only requires the evaluation of a few quantities on
the surface of each bubble and therefore circumvents the computation of other
quantities (such as the liquid flow) in the unbounded fluid domain. The resulting
formulation has been given for the thermocapillary migration of non-conducting and
freely suspended bubbles and it has been found that, for any harmonic ambient
temperature, it is unnecessary to evaluate the disturbance temperature when bubbles
are equivalent. Furthermore, all the analytical results easily obtained for a single
bubble or the thermocapillary motion of equivalent bubbles subject to a uniform
temperature gradient agree well with previous works.

In Part 2 of this work (Sellier 2004), a suitable numerical implementation will be
presented, and it will be shown how to obtain all the required surface quantities by
solving relevant boundary-integral equations on the entire boundary S = ∪N

m=1 Sm.

This property will then permit us to investigate the thermocapillary motion of fully
three-dimensional clusters consisting of at least three non-equivalent bubbles.

Appendix A. Definition of surface operator ∇s and proof of (2.4)
For a prescribed unit vector e, we define a point M on Sn by its spherical angles

(θ, ϕ) with OnM · e = an cos θ, θ ∈ [0, π] and ϕ ∈ [0, 2π]. Setting eϕ = e ∧ OnM/

[an sin θ] and eθ = eϕ ∧ OnM/an, one obtains dM = an[dθeθ + sin θdϕeϕ] on Sn. The
surface gradient ∇sb of a smooth function b(θ, ϕ) obeys db = ∇sb · dM and thus is
written

∇sb =
1

an

{
1

sin θ

∂b

∂ϕ
eϕ +

∂b

∂θ
eθ

}
, eϕ = e∧ OnM/[an sin θ], eθ = eϕ ∧ OnM/an. (A 1)

From ∂eϕ/∂θ = 0, ∂eθ/∂ϕ = cos θeϕ and dSn = a2
n sin θ dθ dϕ, (2.4) follows because∫

Sn

∇sb ∧ OnM dSn = a2
n

∫ π

0

∫ 2π

0

[
∂(beθ )

∂ϕ
− ∂(b sin θeϕ)

∂θ

]
dϕ dθ = 0. (A 2)

On Sn we note that n = OnM/|OnM| = n(θ, ϕ), ∂n/∂θ = eθ and ∂n/∂ϕ = sin θeϕ.

Exploiting (A 1) we thus have, for any constant vector v and any function
d(|OnM|, θ, ϕ),

an∇s[b(n · v)] = an(n · v)∇sb + b[v − (n · v)n], ∇sd = ∇d − (∇d · n)n. (A 3)
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Appendix B. Establishing (2.23)–(2.24)

From Hadamard (1911) and Rybczynski (1911) the flow (u(1)
i , p

(1)
i ), axisymmetric

about the axis (O, ei), has velocity of the form

u(1)
i =

(
2D

r3
+

2C

r

)
cos θer +

(
D

r3
− C

r

)
sin θeθ for r � a (B 1)

with r = |OM |, OM · ei = r cos θ, er = OM/r and eθ = (ei ∧ er ) ∧ er . Since ∇p
(1)
i =

µ∇2u(1)
i with p

(1)
i → 0 at infinity one also obtains p

(1)
i = 2µC cos θ/r2 and

σ
(1)
i · er = −6µ

r2

{(
C +

2D

r2

)
cos θer +

D sin θ

r2
eθ

}
for r � a. (B 2)

On the boundary S1(r = a) the conditions u(1)
i · n = ei · n and σ

(1)
i · n aligned with n = er

thus yield 2a2C + 2D = a3 and D = 0. Hence, one obtains (2.23). It follows that∫
S1

[(
u(1)

i − ei

)
· ∇sγ +

(
n · σ (1)

i · n
)
U · n

]
dS1 = −1

2

∫
S1

∇sγ · ei dS1 − 4πµaUi. (B 3)

Let us now look at the quantities Ki and Li such that

3µKi

a2
= −

∫
S1

(
n · σ (1)

i · n
)
u∞ · n dS1,

3Li

2a2
=

∫
S1

(
ei − u(1)

i

)
· [σ ∞ · n − (n · σ ∞ · n)n] dS1.

(B 4)

Recalling that xi = an · ei = OM · ei on S1 whereas ∇ · u∞ = 0 and ∇ · σ ∞ = 0 in the
vicinity of P1, we obtain from (2.23) and the divergence theorem

Ki = a

∫
S1

(ei · n)u∞ · n dS1 =

∫
P1

∇ · [xiu∞] dv =

[∫
P1

u∞ dv

]
· ei , (B 5)

3Li = −a2

∫
S1

(ei · n)(n · σ ∞ · n) dS1 = −
∫

P1

∇ · [xiσ ∞ · OM] dv. (B 6)

We denote by (u∞(O), ∇p∞(O)) the value of (u∞, ∇p∞) at the bubble centre O and set
Sr = {M, |OM | = r}. Since (u∞, p∞) is a Stokes flow (see (27) in Hetsroni, Wacholder
& Haber 1971) and ∇p∞ · ei is harmonic we have the useful relations∫

Sr

u∞ dS = 4πr2

[
u∞(O) +

r2

6µ
∇p∞(O)

]
,

∫
Sr

∇p∞ · ei dS = 4πr2∇p∞(O) · ei . (B 7)

Accordingly, one obtains

Ki =

∫ a

0

[∫
Sr

u∞ · ei dS

]
dr =

4πa3

3

[
u∞(O) +

a2

10µ
∇p∞(O)

]
· ei . (B 8)

Using Cartesian coordinates and the definition of the stress tensor σ ∞, the reader
may easily check that ∇ · [xiσ ∞ · OM] = xi(∇ · σ ∞) · OM + ei · σ ∞ · OM − 3p∞xi. We
thus have

3Li = −
∫

P1

xi(∇ · σ ∞) · OM dv −
∫ a

0

[∫
Sr

ei · σ ∞ · n dS

]
r dr + 3

∫ a

0

[∫
Sr

p∞ei · n dS

]
r dr.

(B 9)
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Since ∇ · σ ∞ = 0, only the last integral in (B 9) is non-zero. Setting Pr =
{M, |OM | <r} and invoking the divergence theorem and (B 7), it thus appears that

Li =

∫ a

0

[∫
Pr

∇p∞ · ei dS

]
r dr =

∫ a

0

[∫ r

0

(∫
Sρ

∇p∞ · ei dS

)
dρ

]
r dr

=
4πa5

15
∇p∞(O) · ei . (B 10)

Under (B 3)–(B 4),(B 8) and (B 10) it is then easy to deduce (2.24) from (2.22).

Appendix C. Derivation of (3.5) and (3.9)
We set g,i = ∂g/∂xi and note that σ ′ · ei = 2µ∇(T ′

,i) for u′ = ∇T ′ and p′ = 0. Under
the following single-layer representation:

T ′(M) =

N∑
m=1

T ′
m(M) in Ω with T ′

m(M) =

∫
Sm

qm(P ) dSm/PM (C 1)

and observing that ei · σ ′ · n = (σ ′ · ei) · n for the symmetric tensor σ ′, one obtains

I =

∫
Sn

ei · σ ′ · n dSn = 2µ

{
In +

∑
m
=n

Im

}
, Il =

∫
Sn

∇(T ′
l,i) · n dSn. (C 2)

By virtue of (C 1), T ′
m,i is harmonic in Pn for m 
= n and T ′

n,i is harmonic in IR3\Pn.

If Sn(ρ) = {M, |OnM| = ρ} for ρ > an, the divergence theorem yields

In =

∫
Sn(ρ)

∇(T ′
n,i) · OnM

|OnM| dS, Im =

∫
Pn

∇2(T ′
m,i) dv = 0 for m 
= n. (C 3)

In addition, as ρ = |OnM| → ∞, T ′
n and |∇(T ′

n,i)| decay at least as 1/ρ and 1/ρ3 on
Sn(ρ), respectively. Accordingly, In vanishes and, as stated in (3.5), I = 0. Using the
summation convention with n = nj ej and noting g,ij = (g,i),j , on Sn one also arrives
at

σ ′ · n = 2µT ′
,ij nj ei , σ ′

t = σ ′ · n − (n · σ ′ · n)n = 2µ{T ′
,ij nj + (nkT

′
,kjnj )ni}ei . (C 4)

Exploiting the relation (A 3) for v = ei , the reader may also easily check that

∇s(∇T ′ · n) = ni∇s(T
′
,i) +

T ′
,i

an

[ei − nin] = ni[T
′
,ij − (T ′

,iknk)nj ]ej +
∇sT

′

an

. (C 5)

Since T ′
,ij = T ′

,j i , one thus deduces the relation (3.5) for σ ′
t /(2µ) from (C 4)–(C 5).

From our definition (3.9) of L, (2.23) and (C 4), it follows that

L =

∫
S1

[(ei · n)n − ei] · [T∞,kjnj ek] dS1. (C 6)

Using the correspondence ni = xi/a and the divergence theorem, one arrives at

L =

∫
S1

[
xi

a

xj

a
T∞,kj − T∞,ik

]
nk dS1 =

∫
P1

(
xixj

a2
T∞,kj − T∞,ik

)
,k

dv. (C 7)
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For T∞ harmonic in P1(T∞,kk = 0) and Sr or Pr defined as in Appendix B, we thus
have

a2L =

∫
P1

xjT∞,ij dv =

∫ a

0

r

[∫
Sr

T∞,ij nj dS

]
dr =

∫ a

0

r

[∫
Pr

(T∞,ij ),j dv

]
dr = 0. (C 8)
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Rybczynski, D. 1911 Über die fortschreitende Bewegung einer Flüssigen Kugel in einem zähen
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